An Introduction To Thermal Physics

Publisher:
Oup
| Author:
Schroeder
| Language:
English
| Format:
Paperback

928

Save: 20%

In stock

Ships within:
1-4 Days

In stock

Weight 856 g
Book Type

ISBN:
SKU 9780192895554 Category Tag
Category:
Page Extent:
448

Thermal physics deals with collections of large numbers of particles – typically 1 to the 23rd power or so. Examples include the air in a balloon, the water in a lake, the electrons in a chunk of metal, and the photons given off by the sun. We can’t possibly follow every detail of the motions of so many particles. So in thermal physics we assume that these motions are random, and we use the laws of probability to predict how the material as a whole ought to behave. Alternatively, we can measure the bulk properties of a material, and from these infer something about the particles it is made of. This book will give you a working understanding of thermal physics, assuming that you have already studied introductory physics and calculus. You will learn to apply the general laws of energy and entropy to engines, refrigerators, chemical reactions, phase transformations, and mixtures. You will also learn to use basic quantum physics and powerful statistical methods to predict in detail how temperature affects molecular speeds, vibrations of solids, electrical and magnetic behaviors, emission of light, and exotic low-temperature phenomena. The problems and worked examples explore applications not just within physics but also to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life.

0 reviews
0
0
0
0
0

There are no reviews yet.

Be the first to review “An Introduction To Thermal Physics”

Your email address will not be published. Required fields are marked *

You have to be logged in to be able to add photos to your review.

Description

Thermal physics deals with collections of large numbers of particles – typically 1 to the 23rd power or so. Examples include the air in a balloon, the water in a lake, the electrons in a chunk of metal, and the photons given off by the sun. We can’t possibly follow every detail of the motions of so many particles. So in thermal physics we assume that these motions are random, and we use the laws of probability to predict how the material as a whole ought to behave. Alternatively, we can measure the bulk properties of a material, and from these infer something about the particles it is made of. This book will give you a working understanding of thermal physics, assuming that you have already studied introductory physics and calculus. You will learn to apply the general laws of energy and entropy to engines, refrigerators, chemical reactions, phase transformations, and mixtures. You will also learn to use basic quantum physics and powerful statistical methods to predict in detail how temperature affects molecular speeds, vibrations of solids, electrical and magnetic behaviors, emission of light, and exotic low-temperature phenomena. The problems and worked examples explore applications not just within physics but also to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life.

About Author

Daniel V. Schroeder is Professor of Physics at Weber State University in Ogden, Utah, USA. He earned his PhD in Physics at Stanford University, then taught briefly at Pomona College and Grinnell College before coming to Weber State in 1993. He is the coauthor, with Michael E. Peskin, of An Introduction to Quantum Field Theory. From 212 through 216 he served as Associate Editor of the American Journal of Physics.
0 reviews
0
0
0
0
0

There are no reviews yet.

Be the first to review “An Introduction To Thermal Physics”

Your email address will not be published. Required fields are marked *

You have to be logged in to be able to add photos to your review.

RELATED PRODUCTS

RECENTLY VIEWED